Библиотека Интернет Индустрии I2R.ru |
|||
|
Метод анализа иерархийДля решения задач подобного рода в аналитическом планировании широко применяется метод анализа иерархий (далее МАИ), разработанный Т.Саати. Сегодня его используют уже повсеместно от риэлтеров, при оценке недвижимости, до кадровиков, при замещении вакантных должностей. Воспользуемся этим методом и мы для выбора хостинг-провайдера. Первым этапом применения МАИ является структурирование проблемы выбора в виде иерархии или сети. В наиболее элементарном виде иерархия строиться с вершины (цели), через промежуточные уровни-критерии (технико-экономические параметры) к самому нижнему уровню, который в общем случае является набором альтернатив (хостинг-провайдеров в нашем случае).
После иерархического воспроизведения проблемы устанавливаются приоритеты критериев и оценивается каждая из альтернатив по критериям. В МАИ элементы задачи сравниваются попарно по отношению к их воздействию на общую для них характеристику. Система парных сведений приводит к результату, который может быть представлен в виде обратно симметричной матрицы. Элементом матрицы a(i,j) является интенсивность проявления элемента иерархии i относительно элемента иерархии j, оцениваемая по шкале интенсивности от 1 до 9, предложенной автором метода, где оценки имеют следующих смысл:
Если при сравнении одного фактора i с другим j получено a(i,j) = b, то при сравнении второго фактора с первым получаем a(j,i) = 1/b. Опыт показал, что при проведении попарных сравнений в основном ставятся следующие вопросы. При сравнении элементов А и Б:
Относительная сила, величина или вероятность каждого отдельного объекта в иерархии определяется оценкой соответствующего ему элемента собственного вектора матрицы приоритетов, нормализованного к единице. Процедура определения собственных векторов матриц поддается приближению с помощью вычисления геометрической средней. Пусть:
Оценка компонент вектора приоритетов производится по схеме:
Приоритеты синтезируются начиная со второго уровня вниз. Локальные приоритеты перемножаются на приоритет соответствующего критерия на вышестоящем уровне и суммируются по каждому элементу в соответствии с критериями, на которые воздействует элемент. Весьма полезным побочным продуктом теории является так называемый индекс согласованности (ИС), который дает информацию о степени нарушения согласованности. Вместе с матрицей парных сравнений мы имеем меру оценки степени отклонения от согласованности. Если такие отклонения превышают установленные пределы, то тому, кто проводит суждения, следует перепроверить их в матрице. ИС = (l max - n)/(n - 1)Для наших матриц всегда lmax і n. Теперь сравним эту величину с той, которая получилась бы при случайном выборе количественных суждений из нашей шкалы, и образовании обратно симметричной матрицы. Ниже даны средние согласованности для случайных матриц разного порядка.
Если разделить ИС на число, соответствующее случайной согласованности матрицы того же порядка, получим отношение согласованности (ОС). Величина ОС должна быть порядка 10% или менее, чтобы быть приемлемой. В некоторых случаях допускается ОС до 20%, но не более, иначе надо проверить свои суждения. Приведенный выше материал не претендует на полноту изложения метода, а только раскрывает его суть. Из всего этого материала нам понадобятся только значения таблиц 1 и 2, обработка же матриц будет производиться в файле электронной таблицы. Для глубокого изучения метода анализа иерархий рекомендую книгу: |
|
2000-2008 г. Все авторские права соблюдены. |
|